博客
关于我
矩阵可逆的一种刻画方式
阅读量:535 次
发布时间:2019-03-08

本文共 404 字,大约阅读时间需要 1 分钟。

矩阵A满足A + A^T = I,证明其可逆性

矩阵A满足A + A^T = I,我们需要证明A是可逆的。


证明一:反证法

假设A不可逆,那么根据矩阵的理论,存在至少一个非零矩阵x0,使得Ax0 = 0。

考虑x0^T A x0,展开得到:x0^T A x0 = x0^T (A + A^T) x0

由于A + A^T = I,代入得到:x0^T A x0 = x0^T I x0 = x0^T x0

另一方面,展开x0^T A x0,考虑到Ax0 = 0,A^T x0 = (Ax0)^T = 0^T = 0,因此:x0^T A x0 = x0^T 0 = 0

于是得到:x0^T x0 = 0

这意味着x0是一个幂等矩阵且为零矩阵。但这与我们的假设矛盾,因为x0是非零矩阵。这就说明A必须是可逆的。


结论

通过反证法,我们发现矩阵A必须是可逆的,以满足A + A^T = I的条件。因此,A是可逆的矩阵。

转载地址:http://fulnz.baihongyu.com/

你可能感兴趣的文章
NI笔试——大数加法
查看>>
NLog 自定义字段 写入 oracle
查看>>
NLog类库使用探索——详解配置
查看>>
NLP 基于kashgari和BERT实现中文命名实体识别(NER)
查看>>
NLP 模型中的偏差和公平性检测
查看>>
Vue3.0 性能提升主要是通过哪几方面体现的?
查看>>
NLP 项目:维基百科文章爬虫和分类【01】 - 语料库阅读器
查看>>
NLP_什么是统计语言模型_条件概率的链式法则_n元统计语言模型_马尔科夫链_数据稀疏(出现了词库中没有的词)_统计语言模型的平滑策略---人工智能工作笔记0035
查看>>
NLP三大特征抽取器:CNN、RNN与Transformer全面解析
查看>>
NLP学习笔记:使用 Python 进行NLTK
查看>>
NLP度量指标BELU真的完美么?
查看>>
NLP的不同研究领域和最新发展的概述
查看>>
NLP的神经网络训练的新模式
查看>>
NLP采用Bert进行简单文本情感分类
查看>>
NLP问答系统:使用 Deepset SQUAD 和 SQuAD v2 度量评估
查看>>
NLP项目:维基百科文章爬虫和分类【02】 - 语料库转换管道
查看>>
NLP:使用 SciKit Learn 的文本矢量化方法
查看>>
nmap 使用方法详细介绍
查看>>
Nmap扫描教程之Nmap基础知识
查看>>
nmap指纹识别要点以及又快又准之方法
查看>>